
AD-A236 776

A RAND NOTE

An Analyst's Primer for the RNDIABEL
Programming Language

Paul K. Davis

May 1990

E

" J .' -:: , , , "... .. . I

91-02195

91 14 050

s er of iAet Aaesmn i .4ii e of Ah Sertr y N

(0SD), tder'RA2NI! a $iationai Diefense Research_ !as tute, an,,.
OSD-supported federall'y f unded research,-and developime.t center,
Contract No.,-MA9O3-90-C-OOO4.

The RAND Publication Series: The Report is the principal publication doc-
umenting and transmitting RAND's major research findings and final research
results. The RAND Note reports other outputs of sponsored research for
general distribution. .Publications of The RAND Corporation. do not neces-
sarily reflect the opinions or policies of the sponsors of RAND research.

Published by The RAND Corporation
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

Unclassified
s9CUi- CL-ASSiPiCATIiOi OP TMWiS PA., f -Z .m ________________

RUAD IVRUCTMOSREPORT DOCUMENTATION PAGE IMOR COPX GFR
1. 9101THU1113.1 GOVT ACCESSIOM &. REciiP E ATALOG numUeR

4. TITLIE tmnASsahtitt) 5. TYPE OF REPORT a PERIOD COVERED

An Analyst's Primer for the RAND/ABEL interim
Programming Language G. pe"FORMING ORG. REPORT NMSmER

7. AU THOR(*) IL CONTRACT OR GRANT NUM@Pk4.)

P. K. Davis MDA93-90-C-0004

9. PERPOANWHO ORGANIZATION NAMIE AND ADDRESS s. PROGRA LMN.POET TAUI
AREA &RK Um~cNT NupmMUEST

RAND
1700 Main Street
Santa Monica, CA 90401______________

I CONTROLLING OFFICE MNM AND ADDRESS311 IS. RIEPORT DATE

Director of Net Assessment May 1990
Office of the Secretary of Defense 1S. NUMUEROF PAGE"IS

.1Washington, DC 20301 43______________
14. MONITORING0 AGIMCY NAMIE& AODRESS(II 40111000 1000 C~x&WihW Olnes) 11k SECURITY CLASS. (of OWS repo")

uncsified

IS& SUCLASS1IFICAlON/OONAOING

14L OISTRIGUION STATELMENT (of this JpMg)

Approved for Public Release; Distribution Unlimited

17. OISTRIGUTION STATELMENT (f s Me 6~ Eato IN Bloc 20. it ~4011 40o Ropor)

No Restrictions

IS. SUPPLEMIENTARY NOTES

I*. KE9V WORDS (Conow,. an roweroo old* It 000..04W W fddir by Week 0006w)

Programming Languages
Instruction Manuals

4.ASSTRACT (Coawm on powow wide It n..euup -W 1~lp b eek nownet)

See reverse side

D t piO" 1473 EDITON Or I Nov e is oUSOLETE Unclassified

SECURITY CLASSIFICATION OP THIS PAGEt (WhenDma .tav6)

Unclassified
|$GU I T CL.ASSIPICAO1N OF TiS P Ae(lw D4@10em edme

This Note is a primer for analysts wishing
to use the RAND/ABEL programming language,
a fast, high-level, strongly typed
procedural language developed for use in
building large and complex knowledge-based
simulations in a C/UNIX .environment. The
primer supplements the comprehensive
reference manual by providing a simple
introduction and problem sets. The

targeted reader is an analyst with
subject-area knowledge, modeling
capability, and a general understanding of
computer programming, but only modest
programming skills. After reading this
primer and working through the exercises
provided, such a person should be able to
read and modify substantive logic within

RAND/ABEL programs, although sometimes
going to the reference manual and depending
on more proficient programmers for complex

operations or subtle debugging.

Unclassified
SCCUNITY CLAU8IPICATIO 0; THIS PAGE(Vh- 9D-1- S-1)

A- **.I'4 Pa?~r /
OFI

IDistritutiarif

A RAND NOTE N-3042-NA £slblt oe!ATvkI4 and/or
QjV :Disl.

An Analyst's Primer for the RANDBELW
Programming Language

Paul K. Davis

May 1990

Prepared for the
Director of Net Assessment,
Office of the Secretary of Defense

A research publication from
The RAND Strategy Assessment Center

RAND
AOOED FO PUMIC RELEASE; DISTIS~uTlON UNLtMiTUD

- ili -

PREFACE

This Note is part of a continuing project to develop and improve the RAND

Strategy Assessment System (RSAS), a project sponsored by the Director of Net

Assessment in the Office of the Secretary of Defense. The work was conducted in the

RAND Strategy Assessment Center (RSAC), which is part of RAND's National Defense

Research Institute (NDRI), a Federally Funded Research and Development Center.

Comments and suggestions should be addressed to the author, who directs the RSAC, or

to Dr. Bruce W. Bennett, the Associate Director leading the RSAS development project

(electronic mail: pdavis@rand.org and bennett@rand.org, respectively). Technical

questions about RAND-ABEL should be addressed to Edward Hall or Robert Weissler

(edhaU@rand.org or weissler@rand.org, respectively).

-v-

SUMMARY

This is a primer for analysts wishing to use the RAND-ABEL® programming

language, a fast high-level strongly typed procedural language developed for use in

building large and complex knowledge-based simulations in a C/UNIX environmenL

The primer supplements the comprehensive reference manual by providing a simple

introduction and problem sets. The targeted reader is an analyst with subject-area

knowledge, modeling capability, and a general understanding of computer

programming-but only modest programming skills. After reading this primer and

working through the exercises provided, such a person should be able to read and modify

substantive logic within RAND-ABEL programs, although sometimes going to the

reference manual and depending on more proficient programmers for complex operations

or subtle debugging.

- vii -

ACKNOWLEDGMENTS

Colleagues Barry Wilson, Robert Weissler, and Herb Shukiar reviewed this Note

in draft and caught a number of mistakes, some stupid and some subtle. They are not to

be blamed for those remaining, however.

- ix -

CONTENTS

PREFACE .. iii

SUMMARY .. v

ACKNOWLEDGMENTS .. vii

FIGURES .. xi

Section
I. INTRODUCTION 1

Objectives and Approach 1
The RAND-ABEL Programming Language 1
Structure of the Primer 2

II. BASIC ELEMENTS OF THE LANGUAGE 3
Elements of a Program: Concepts and Terminology 3
Key W ords ... 4
Names (Identifiers) 7
Variable Types (Data Types) 9
Declarations .. 12
Functions .. 15

Ill. STATEMENTS .. 18
Compound Statements 18
Assignments .. 18
Conditional and Repetitive Executions 19
Table Statements 21
Function Statements 25
Mac .. 25Ip tadO tuSttm ns............................. 2
Null Statements 26

IV. COPROCESSES 27

V. EXPERIMENTING ON-LINE 28

VI. NEXT STEPS: BECOMING APPROPRIATELY PROFICIENT 33

Appendix: PROBLEM SETS FOR SELF-LEARNING 35

INDEX .. 43

- Xi -

FIGURES

2.1. Illustrative RAND-ABEL computer code 5
2.2. Identifying different elements of RAND-ABEL code 5
2.3. Key words of the English word variety 6
2.4. Most important RAND-ABEL operators 7
2.5. Valid and invalid characters in names (identifiers) 8
2.6. Illustrative declarations 13
5.1. Illustrative use of the RSAS cross-referencing tool 29
5.2. Illustrative error messages while attempting to interpret code 31
A.1. Illustrative RAND-ABEL code (1) 37
A.2. Illustrative RAND-ABEL code (2) 37

-1-

I. INTRODUCTION

OBJECTIVES AND APPROACH

The purpose of this primer is to help prospective analyst users of the RAND-ABEL

programming language get into applications quickly. The minimum prerequisite is an

understanding of basic programming concepts, and preferably at least some modest

programming experience.' Readers who are or wish to become skilled programmers will

later want to master the reference manual,2 henceforth referred to as RM, which they will

use only sparingly in going through this primer and its problem sets (given in the

Appendix). Other readers will want instead to depend on programmers for assistance,

while they focus on understanding and improving the substantive content of models. Still

others will be somewhere in between-preferring to do their own modeling and

programming, but needing help from professional programmers for relatively complex

operations. It is the last two groups to which this primer is largely targeted. As a result, no

attempt is made here to be comprehensive.

THE RAND-ABEL® PROGRAMMING LANGUAGE

RAND-ABEL is a fast high-level strongly typed procedural language developed for

use in building large and complex knowledge-based simulations.3 It translates into the C

language before execution in a UNIX environment such as that provided by Sun work

stations. The language is highly readable and encourages good programming practices. It

employs a data dictionary, making self-documentation of programs more straightforward. It

includes friendly and powerful new features, notably certain table structures which simplify

and clarify knowledge-based models of the "forward-chaining" variety (RAND-ABEL does

not support backward-chaining inference of the sort emphasized in PROLOG). The

language has been used within RAND for several years, resulting in hundreds of thousands

of lines of code in a range of programs that include decision models and algorithmic

IReaders with a background in such structured languages as Pascal and C will find RAND-
ABEL easy to pick up. There are a number of elementary texts for Pascal available that might be
useful in elaborating concepts dealt with only briefly here.

2Norman 7. Shapiro, H. Edward Hall, Robert H. Anderson, Mark LaCasse, Marriela S.
Gillogly, and Robert Weissler, The RAND-ABEL Programming Language: Reference Manual,
The RAND Corporation, N-2367- I-NA. December 1988.

3For background, see Norman Z. Shapiro, H. Edward Hall, Robert H. Anderson, and Mark
LaCasse, The RAND-ABEL Programming Language: History, Rationale, and Design, The RAND
Corporation, R-3274-NA, August 1985. There have been a number of changes to the language
since 1985, but the underlying concepts have remained the same.

-2-

calculations. Its optional interpreter permits users to modify code interactively, 4 which has

proven invaluable. Current users of RAND-ABEL range from "nonprogrammers," who make

focused substantive changes and then depend on magic incantations (commands that work for

reasons they don't understand), to professional programmers who use the language for

sophisticated applications. The reaction to RAND-ABEL has been quite favorable, although

it is more suitable for some applications than others. In its largest application to date, the

RAND Strategy Assessment System (RSAS), some of the computationally intensive models

are written in the general-purpose language C, while other models are written in RAND-

ABEL. 5 Although it is rarely necessary to do so, one can "drop into C" from within a

RAND-ABEL program. One might do this, for example, to make use of the extensive

C/UNIX library of special functions or to perform efficiently some complex calculation.

RAND-ABEL is available currently in the RSAS, which is a classified system, and

in the RAND-ABEL Modeling Platform (RAMP) developed by colleague Edward Hall;

RAMP is an unclassified and content-free technology shell consisting of the language

and a variety of tools for graphics, logs, and cross referencing. Both the RSAS and the

RAMP depend currently on Sun work stations because of system-specific graphics code.

RAND is making RAMP available to researchers at no or minimal cost.

STRUCTURE OF THE PRIMER
With this background, Section II of this Note reviews basic programming concepts

and terminology, which is important because of the considerable variation in terminology

across languages, programmers and modelers. Section III then gives a bottom-up

discussion of variables, data types, declarations, opeiators, and functions. Section IV

describes the principal statements of the RAND-ABEL language. Section V suggests how

to get started using the language, under the assumption that one already has a working

RAND-ABEL program operating on a Sun work station. The Appendix provides problem

sets that can significantly help the learning process.

4That is, one can stop program execution, modify the code, and start up again rather than
stopping, changing code, recompiling and starting from the beginning.

Technical readers may wish to see Paul K. Davis and H. Edward Hall, Overview of System
Software in the RAND Strategy Assessment System, The RAND Corporation, N-2755-NA,
December 1988. For examples of RAND-ABEL usage in decision models, see Paul K. Davis,
Steven C. Bankes and James Kahan, A New Methodology for Modeling National Command Level
Decisionmaking in War Games and Simulations, The RAND Corporation, R-3290-NA, July 1986;
and William Schwabe and Barry Wilson, Analytic War Plans: Adaptive Force-Employment Logic
in the RAND Strategy Assessment System (RSAS), The RAND Corporation, N-305 1-NA
(forthcoming). For an example of its usage in building combat models, see Patrick Allen and Barry
Wilson, Secondary Land Theater Model, The RAND Corporation, N-2625-NA, December 1987.

-3-

II. BASIC ELEMENTS OF THE LANGUAGE

ELEMENTS OF A PROGRAM: CONCEPTS AND TERMINOLOGY
It is important to give names to each and every element of a computer program.

This process is akin to defining parts of speech in English and then diagramming

sentences.

Characters are those individual symbols available on the keyboard that are

recognized by the RAND-ABEL language-e.g., the letters of the alphabet, the integers 0

through 9, and certain symbols such as $ or *.

Words are packages of characters with no spaces between them. In this definition,
123 is a word, just as much as Edgar or Velocity-4.

Words are either key words or names. Key words are set aside as part of the

language and include commands dictating control (e.g., "If ...Then..." includes the key

words if and then), operators such as + and /, and some other items. Names may be

names of variables (also called data elements), functions, inputs to functions called

arguments (or, in a more ambiguous usage, parameters),6 and values of functions. An
expression is a word, or a set of words related to or combined with one another via

operators, which can be uniquely evaluated (e.g., (4 + 3)).

Computer programs are made up of comments and statements, which are built up
from these words and expressions. Comments are ignored by the computer (i.e., they are

not executable). In RAND-ABEL they are enclosed in brackets as in "[This is a

comment.]." The executable part of computer programs, the statements, are each

unambiguous instructions. For example, "Let x be 4." is a statement, as is "Print x."

Functions are made up of statements (if we consider declarations, discussed

below, as special cases of statements). The statements may include invoking other
functions. Functions themselves can be thought of as black-box segments of the program

that do something worth separating off and giving a name to. For example, RAND-

ABEL does not itself understand square roots, but one can define a function Square-root

that will calculate square roots upon demand. Other functions might consist of numerous

6Computer scientists use the words variable, data, and parameter quite differently than do
most scientists, engineers, mathematicians, analysts, and operations researchers. A modeler's
"variables" may be only a subset of the programmer's "variables," and his "data" may be another
small subset, the subset of a programmer's "variables" provided in an input statement. Typically,
an analyst uses the word "parameter" to mean an item of data that is to be treated as routinely
variable. In RSAS documentation, parameters are the subset of input data that can be changed
interactively during a run.

-4-

statements which together represent something conceptually important, such as suggested

by the function name Assess-situation. As mentioned above, functions may have

arguments.

Since all of this may seem abstract, consider as a preview of things to come Fig.

2.1, which shows extracts from actual RAND-ABEL code. Note its readability.7 All

comments are enclosed in brackets; the names of things are English-like, except that there

are hyphens connecting segments of names. Figure 2.2 shows the same extract annotated

to identify the different elements of the code; all key words are indicated in bold.

Following custom, we gloss over distinctions between names of things and the things

themselves. For example, Fig. 2.2 highlights AFCENTI-deterrence-phase as a function,

although one could say that what is highlighted is actually the name of the function. In

any case, the purpose of AFCENTI-deterrence-phase is to specify orders to certain

military forces during a crisis but before conflict begins (what is called here the

deterrence phase). The question is what is supposed to happen during the deterrence

phase, and under what conditions. We see from the definition that what happens

depends on a variable called Point-in-Plan. There are a number of different types of

variable; this one is an ar-ay or what some might call a vector. There is a Point-in-Plan

value for each of a nun. zr of military theaters, of which AFCENT is only one. Hence,

the phrase "of AFCENT" is specifying a particular component of the array-type variable.

This variable has qualitative values such as Move-to-deterrence. If the If condition is

met, then another function will be "performed" Oust as, in other languages, one would

call a subroutine). Later, the reader will be asked to work through problem sets that

include marking up code in this way. First, however, we need to provide more

groundwork.

KEY WORDS

True Key Words of the Language

The RAND-ABEL language has many key words (Fig. 2.3), which have specific

meaning to the computer and therefore cannot be used as names of variables. The first

letter of key words such as Let may be capitalized or not with no change in meaning; the

other letters must be in lower case. Numbers are also key words: When standing alone

they are recognized as numbers and therefore cannot be names. Thus 145 is a number,

while Vel- 145 is a name.

7AFCENT is an acronym for Allied Forces, Central Europe, i.e., a military command-
AFCENTI is one of that command's plans.

-5-

Define AFCENT1 -deterrence-phase:

Hf Point-in-plan of AFCENT is at most Move-to-deterrence
Then Perform AFCENT-deterrerice-move.

While Point-in-Plan of AFCENT Is at most Deterrence:

[Deploy US and Allied forces as they become avaiable

If (Today is at least C-Day of AFCENT) and
Authorization of Deployment, AFCENT is Full
Then Perform AFCENT1 -deterrence-deployment-move.

End.

Fig.2. 1-lustrative RAND-ABEL computer code

Function

Variable Define AFCENT tilsrrence-bae

If Point-in-plan of AFCENT Is at most Ave-to-daerrence

Function If (Today Isat Meast C-Day of AFCEN7) value
invoked -o Authorization of Depbyment; AFCENT Is F
by key word Then Perform ACN1-o
"Perform' .

E)d A commentEnd. contained
in brackets

End of the
definition of function BOL TYPE DENOTES KEY WORDS BWXLT
AFCENT1 -deterrence-phase INTO TH LANGUAGE.

Fig. 2.2-Identifying different elements of RAND-ABEL code

-6-

and End La...be References
are End Declarations Log Report from
are not Erasable Reporting
as Erase Macto
Attribute Evaluate Make Sol
Author Everyone Method Semi-erasable

Exit minus status
Begin Declarations modulo String
Break For Multiply...by
by Format Table

from negative There is
Clone Function No times
Comments Not Trace
Concatenated with Global
Constant of Unerasable
Continue f...Then or Unspecified

f...Then...Else Owner Untrace
Data Ignore Use
Declare In Parent using
Declare... Include Perform

by example Increase..by plus Validation
Decrease by Initialize Pointer to Value of
Default is Print
Define is at least Prompt While
#define is at most with
Definition is greater than Range Write
Divide...by is less than Read
Divided by is not Record Yes

Fig. 2.3- Key words of the English word variety

Other Reserved Words

For masons of improving readability, RAND-ABEL has some noise or "throw

away" words, notably the articles a, an, and the. The computer ignores them. Although

these are not true key words, they are unavailable as names. In any given program there

may be a number of other words set aside as well, either as noise words or as aliases

(i.e., synonyms) for other words. Aliases are created with a macro statement, discussed

later.

Operators

Operators may also be considered key words. The most important RAND-ABEL

operators are shown in Fig. 2.4. It is preferable to use mathematical symbology where it

applies, because that symbology is as much a part of the English language, and more

economical than, such prose constructs as "is at leasL" There are some clever features

-7-

Equivalent Forms llustrative

Math Form Prose Form Usage (a)

+ pluis 4+3

* tims 4 *3
Sdivided by 4/3

negative -4
=(b) Is If x , y then

Is grste thwi x • y
- Is IM than x <y
A aA2
- Is not y -Mx

Is at lwt y>-x
Is at most y <- x

(a) Spaces are usualy necessary before and after
operators.

(b) -= can be used instead of -.

Fig. 2.4-Most important RAND-ABEL operators

that make the use of operators more English-like. In particular, "is" and "are" may be

used interchangeably, which means that one can use proper English with respect to

singulars and plurals. There are some other operators discussed in the RM (pp. 20ff.). As

in other languages, one can and must use parentheses to resolve ambiguities, but there are

also precedence rules to reduce ambiguities. For example, in the expression aA2 * 3, the

value of a is squared (A denotes exponentiation) before multiplying it by 3.s

NAMES (IDENTIFIERS)
The various elements of a RAND-ABEL program have names or "identifiers."

There is substantial latitude in creating names (RM, pp. 7ff.), as the folowing examples

illustrate:

STUe exponentiation operator A was added since the RM was written.

Escalation-guidance

exchange-ratio

AFCENT-init-forward-defense-order

V2

84flight#-2

Figure 2.5 shows the characters that can be used freely and some characters to be avoided

altogether in names. Also, in names capital letters are distinct from small letters (e.g.,

Abcde is different from abcde).

There are other special rules limiting usage. Although some of them can be

violated in certain contexts, the following are good practical rules:

" There can be no spaces within names (absolute rule).

* Avoid key words (e.g., Let and stand-alone operators such as +).

* No stand-alone numbers such as 245 can be used as names.

" Avoid -, -, and . as initial or final characters.

" Even though the underscore character_ is valid in RAND-ABEL, don't use it
because it causes problems in the Data Editor (not mentioned in the RM).

One cannot necessarily tell from its name what something is in a program (e.g., a

variable, function, or comment). Instead, one usually judges that from context. As we

saw in Fig. 2.1, function names are accompanied by key words like Perform. In an

assignment statement (e.g., Let ... be ...), it must be a variable name that appears to the

left of the be and the name of a variable value to the right. Skill in identifying elements

from context increases as one spends more time with programs.

Valid characters Some invalid
for use In names characters in names
A B ... Z; a b... z; **\ }]>.C>=

I.$ * , $

Fig. 2.5-Valid and invalid characters in names (identifiers)

-9-

VARIABLE TYPES (DATA TYPES)

Variables and Data Elenents
Computer scientists often treat "variables" and "data elements" as synonymous.

They are the "things" being kept track of in the program. Some of these correspond to

real-world objects, some to abstractions descibing the real world (e.g., conflict-level),

and some to matters of concern to the mod,:l or computer program (e.g., the analyst-

specified simulation duration measured in simulated days, or the level of detail to be

printed out in the simulation's log). Their values may change in the course of the

simulation. Operators like + are not variables; nor are key words or functions.

Global and Local Variables
As elaborated later, variables in RAND-ABEL may be defined locally (within a

function) or globally. Only global variables' values are consistently stored as the

program executes.

Primitive (Built-In) Data Types
The variables or data elements of a RAND-ABEL program fall into nine classes.

Six of these are "built in":

Integers (e.g., 1,4, or 9)

Real numbers, which are better called decimal numbers (e.g., 4.3 or,
to use scientific notation, 6.02E23, meaning what would be handwritten as
6.02 X 1023; note the absence of spacing in 6.02E23)

Strings (a series of characters set off by quotation marks, as in "Enemy

capitulates")

Boolean or Logical (variables that can have values Yes or No)

Process (e.g., RSAS analytic war plans, which are independent
coprocesses; see RM for details)

Stream (a data type associated with "pointers" to output files; see RM for
details)

As a point of comparison, RAND-ABEL does not currently have built-in complex

(imaginary) numbers, double-precision numbers, structures, or certain other data types

found in more general-purpose languages such as C.

- 10-

ConstruCted DO Types

There are three additional basic variable types: enumerations, arrays, and

pointers. These are especially important because one can define an arbitrary

number of additional variable types in terms of them. The reason for wanting to do so

will become evident later.

Arrays. Just as in the physical sciences the apparent complexity of problems is

reduced by introducing the concept of vector or matrix variables (e.g., the equation F =
M a substitutes for three equations F1 = M a , etc.), so also can we simplify programs by

using what programmers usually call arrays. An array with one index is equivalent to a

vector, one with two indices is equivalent to a two-dimensional matrix, and so on. In our

earlier example, Point-in-plan was a singly indexed array variable. Another might be a

variable in the RSAS called Strategic-warning. This is a singly indexed array or vector

with as many components as there are theater commands. One of its components might

be used in an expression such as "If Strategic-waming of AFCENT > Eur-nuc....., where
the key word of highlights that a component of an array is being referenced.

Enumerations. With knowledge-based models, it is important to have variables

with qualitative values. RAND-ABEL recognizes a broad class of data types called

enumerations, which can have values in a finite ordered set such as (Low, Medium,

High). An example of the data type enumeration is called an enumerated variable.

Because the values of an enumerated variable are in an ordered set, one can write

statements such as "If Temperature > Low, Then....., which is then equivalent to the

longer statement:

If Temperature is Medium or

Temperature is High

Then...

Use of the operators > and < can greatly mitigate combinatorial explosion and increase

clarity in complex models. This is not just a programming trick to avoid filling out an

enormous decision tree, because in fact we often conceptualize the rules in terms of

greater-than or less-than relationships.

All enumerated variables have the special value Unspecified, which is usually

denoted - -. Unspecified is an ambiguous concept in that a value may be unspecified

because it is substantively unknown (an expression of uncertainty), because it has just

not been set yet (perhaps by omission), or because the value doesn't matter substantively

- 11 -

in the particular rule.9 Global enumerated variables, defined below, have the default

value of - -, while local enumerated variables have what programmers call "garbage" as

their default value, 10 which means that what the default value is depends on what the

computer has recently processed, rather than something consistent and logical. Thus, in

using local enumerated variables it is important to initialize explicitly.

Enumerations are defined with statements such as:

Define Enumeration Type-ally: France, Germany, Belgium, Netherlands, UK.

Then, one may have a large number of different variables of the type Type-ally. Such

variables have the same range of values (the list of nations shown) and can be combined

and compared to one another, despite the "strong typing" defined next.

Strong Typing. RAND-ABEL is "strongly typed," which means that it will not

generally permit statements relating or combining variables of different types. This may

seem bothersome, because sometimes one wants to do so. However, strongly typed

languages are desirable for complex programs, because they greatly improve the

likelihood of catching logical or implementational errors early, which is especially useful

to nonprofessional programmers. They also reduce ambiguities that might be resolved by

the computer in unexpected and mysterious ways (e.g., by arbitrarily assuming the first

of two possibilities). In any case, if a modeler conceives a number of enumerated

variables that are to be related to one another in rules, then he must define them all to be

examples of the same data type. Consider two variables, Color and Mood. Color might

have values Red, Green, and Blue, while Mood might have values Angry, Blue, and

Querulous. The RAND-ABEL compiler would refuse to accept a statement such as

Let Mood be Color.,

because the two variables are of different types. However, one could have

Let Johns-mood be Sallys-mood.

91n the special context of decision tables, as discussed later, one can use ** to mean "any
value" in a rule in which one wants to indicate that a particular variable doesn't matter. If one is
careful to assure that all variables are assigned values, then - - can be reserved to mean,
substantively, "unknown."

10The RM is incorrect on the issue of defaults (page 15).

-12-

if the two variables were both of type Type-mood with values Angry, Blue, and

Querulous. This may seem an annoying complication to those readers familiar with

simple programming in BASIC or FORTRAN, which do not have strong typing, but the

price paid is small compared to the benefits gained in dealing with complex programs.

Pointem. Pointers can be avoided by beginners to RAND-ABEL, but are useful

after one gains some sophistication. To understand them, consider that in normal English

one often uses indirection, as in answering "Which size air filter do I put on this car"?

The answer might be: "Well, I don't know; go look in the book to see what class this car

model falls into and use the corresponding air filter." The second person was answering

by "pointing to" where the answer was to be found, noting that it was case dependent.

Similarly, in computer programs one may use variables called pointers for indirection.

This can speed computational efficiency, improve modularity, and improve program

clarity." Pointers are indicated in RSAS code by use of the key words pointer to, a

synonym function, and value of. 2

DECLARATIONS

Syntax
To introduce variables or functions into a RAND-ABEL program one must

"declare" their type so that the computer will process them appropriately.' 3 This is

accomplished by a clever ostensive technique that is especially useful when dealing with

enumerated variables. Figure 2.6 illustrates declarations for the most important data

types and functions. Bold letters indicate key words. Underlines indicate the evidence

the computer uses to infer data type from the declaration. In the first two cases, the

evidence is a decimal number and an integer, respectively. In the third case, the key word

Perform indicates a function. The next case implies that function2 is a function that

produces an integer as output. In the next case, quotes indicate a string variable. In the

next, the key word Yes indicates a Boolean variable. The next indicates an enumerated

tt Some of the variables a modeler would identify in his pencil-and-paper work may be
represented as pointers in a simulation. In such cases they are not being handled as "state
variables." In the simulation, they do not have values to be kept track of. Instead, when the
computer processes a rule involving such a variable, it looks to where the pointer points and,
typically, computes and uses the value of a function.

t2The are other synonyms, which are less intuitive and should be avoided. These are
address of and occupant of as synonyms for pointer to and value of, respectively.

13Declarations are not always necessary in other programming languages, but the price
paid for this is that the computer infers data type, sometimes incorrectly, and one loses the
opportunity to detect a great many bugs early (e.g., in languages that don't require declarations,
one can mistype a variable name and have the result interpreted as a legitimate new variable).

-13-

Declare Variable-1: Let Variable-1 be 1.

Declare Variable-2: Lot Variable-2 be 2.

Declare function-name: Perform function-name.

Declare function2: Let 1A be tleJrm from unction2.

Declare Country-name: Let Country-name be Inf"a.

Declare y : Let y be Ya.

Declare tactical-warning: Let tactical-warning be Iy-anizu

Declare Strategic-waming: Let Type-warning of AFCET be I=-wameng.

Fig. 2.6--mustrative declarations

variable of type Type-waming, after which we see that Strategic-warning is a singly

indexed array, by theater, the component values of which are Type-warning.

Local and Global Variables

As mentioned earlier, local variables are those used (referenced via "If variable-

name...') or changed (via "Let variable-name...') only within a given function. Their

declarations must therefore appear within that function. The global variables in RAND-

ABEL are variables usable anywhere in the program (except for ownership restrictions

described below). Their declarations must appear in something called the Data

Dictionary, discussed below. As a stylistic convention rather than as part of the language,

RSAS code capitalizes the first letter of global variables, but not local variables.

Ownership

Ownership issues are a bit complex and may be skipped in a first reading. This

said, variables and functions in RAND-ABEL have an owner indicated by a name (e.g.,

Red, Blue, AFCENT, or Edgar). This name may refer to an abstraction such as the RSAS

Red Agent representing the Soviet Union. which does not exist per se but which has

associated programs called, for example, Ivan or HCFW (an acronym for High Command

of Forces West). Alternatively, it may refer to an "access group," i.e., a group of people

who are working together on a given portion of software and therefore need to have

common access.

- 14-

The default is Global ownership, in which case the variables or functions can be

referenced or changed from anywhere in the program with no special tricks. However,

variables or functions owned by, say, Red, may be "hidden" or otherwise "protected."

The owner, Red, may specify whether nonowners can read or write (i.e., see or refer to,

or change the value of, respectively). A commonly used option in the RSAS is that if

Red owns something, it allows Everyone to read and write it, in which case it can be

accessed by, for example, Blue-if the Blue code attaches the prefix "Red's" to fully

specify the variable's (or function's) name. Thus, one could write in Blue code that "If

Red's variable-name is... Then...".14 If one doesn't want this kind of cross accessing,

which is bad programming practice when overdone, Red can deny read and write access

altogether. 15.16

The ownership feature has many important benefits. At the mundane level, it

means that one can use the same name for many different variables or functions, so long

as they have different owners (whose names are implicitly part of variables' "full

names"). In the RSAS, for example, all the military-command-level models such as

AFCENT have mostly the same names for their subordinate functions and key variables

(e.g., Point-in-plan, Deterrence-move, FLOT-position-on-axis-3).

Modularity

Existing programs written in RAND-ABEL make extensive use of global

variables, which is contrary to what is often described as virtuous design practice with

strict modularity. However, by using RAND-ABEL's ownership features one may have a

centralized database and still achieve a high degree of modularity, without which it is

difficult to build and maintain large and complex programs (see Davis and Hall,

1988, op. cit.). This is a very useful and unusual feature of RAND-ABEL,

however unconventional.

t4This can be quite useful in prototype game-structured decision modeling, because it can
eliminate the step of having one model "send a message" to another. Instead, each model can
monitor some of the other's internal variables.

15The ownership restrictions work very much like those associated with human word
processing files. An access group, for example, may consist of an analyst and a secretary. There
may be a larger group with read-only access, but others can neither read nor change the files.

W6This is not well documented in the RM, but is discussed in on-line documentation of the
Data Dictionary, which is described below.

-15-

Data Dictionary

As mentioned above, global variables must be declared in the Data Dictionary,

which is a higher-level function drawn upon by the rest of the program. The Data

Dictionary is where one finds the precise names and meanings of variables. "Meaning,"

however, has several connotations that include data type and semantic meaning. A

variable's declaration specifies its data type, but its "meaning" must be given in the form

of comments. There is no way for the computer truly to "understand" all the variables it

is manipulating.

For those able to work on-line with the RSAS or RAMP, the Data Dictionary can

be accessed conveniently through the Cross Referencing Tool-e.g., to verify quickly the

correct spelling of a variable's name, its data type, its permitted values (and their

spelling), and certain other information. It also allows one to view quickly, without

visible UNIX operations, the original declaration that should include the comments
"explaining the variable's semantic meaning." An example is given in Section V.

FUNCTIONS

Functions are segments of code that may be thought of as black boxes that do

something worthy of having a separate name and module. It is good programming

practice to break programs down into naturally separable modules so that one can work

on one part of the program without worrying about other parts. A function called Square-

root might compute square roots, perhaps by calling on a library of functions available to

RAND-ABEL as part of the background C-UNIX environmenL Another function,

Assess-situation, might collect all the statements updating situation in a decisionmaking

model.

Functions come in two varieties, those that always return a value and those that

never do. The latter correspond to what are called subroutines in FORTRAN.

The syntax for functions in RAND-ABEL can be illustrated as follows.

Functions Returning a Value

For our example, let us assume that HO, g, and T are global variables that have

been declared and defined earlier (they represent initial altitude, the gravitational

constant, and time). A function Calculate-altitude could be declared and defined as

follows:

-16-

Declare Calculate-altitude: Let 14 be the report from Calculate-altitude.

Define Calculate-altitude:

Exit reporting (HO - 1/2 * g * TA2).

End.

The function could then be used in contexts such as a segment of code making

qualitative characterizations of a falling body's altitude:

If the report from Calculate-altitude >= 10000

Then Let Altitude-range be High.

Else Let Altitude-range be Low.

Functions Not Retuming a Value (Subroutines)

Declaration and definition follow the syntax shown below, which assumes that HO,
gray, Time, and Current-altitude are valid global variables.

Declare Update-altitude: Perform Update-altitude.

Define Update-altitude:

Let Current-altitude be HO - 1/2 * gray * TimeA2.

End.

Usage might then look something like the following, where Altitude-range is

another global variable.

Perform Update-altitude.

If Current-altitude >= 10000

Then Let Altitude-range be High.

Else Let Altitude-range be Low.

Functions Having Arguments (I.e., Taking Parameters)
Functions of either type may depend on one or more arguments. If so, this is

specified as part of the declaration. For example, using a variant of the first case above

we might have declaration, definition, and usage as follows:

Declare Calculate-altitude:

Let 14 be the report from Calculate-altitude using 20000 [feet] as HO
and 32 [ft per second per second] as gray.

-17-

Derme Calculate-altitude:

Exit reporting HO - 1/2 * grav * TimcA2.

End.

If (report from Calculate-altitude using 17000 as HO and 32 as gray)>

= 10000
Then Let Altitude-range be High.

Else Let Altitude-range be Low.

Here 17000 and 32 ar values of arguments. The generalization of this approach is

straightforward (see RM, pp. 33ff.).

-18-

Ill. STATEMENTS

As discussed earlier, statements are the executable instructions that constitute

programs. RAND-ABEL has the following types of statement, in addition to

declarations: (I) Assignments, (2) Conditional executions, (3) Repetitive executions,

(4) Table statements, (5) Invoking and exiting from functions, (6) Input and output,
(7) Compound, and (8) Null. We shall consider each of these briefly. In some cases there
are additional versions of the statement discussed in the reference manual. Here we

merely give examples of the proper syntax for standard statements.

COMPOUND STATEMENTS
Although it may seem out of order to do so, let us consider compound statements

first so that our examples can be a bit richer in what follows. A compound statement is a

series of simple statements collected within braces, as in:

If weather is good

Then
{

Let mood be good.

Let interest-in-picnic be high.

Perform Check-picnic-feasibility.

Each statement within the braces must end with a period.

ASSIGNMENTS

Assignment statements are the bread and butter of computer programs. Denoting

key words in bold print, the syntax for the most common assignment statements is as

follows.

Let Weather be Good.

Let Altitude-range be the report from Calculate-altitude using 17000

as HO and 32 as gray.

-19-

Note that the item to the left of be must be a variable, while that to the right must

be a value, either of a variable or an expression, or, as in the second case, a value returned

by a function.1
7

CONDITIONAL AND REPETITIVE EXECUTIONS

If-Then and If-Then-Else Statements

We have already used If-Then statements in our examples. They can be

considered primitive concepts here. Just to repeat, however, the syntax for the more

general If-Then-Else statement is illustrated by:

If report from Calculate-altitude using 17000 as HO and 32 as grav >=

10000

Then Let Altitude-range be High.

Else Let Altitude-range be Low.

While Loops

The While statement is another workhorse in RAND-ABEL and is used for many

statements that might be handled in other languages by FOR or DO statements. As one

example:

Let k =3.

While k > 0:
I

Print resultsfile k.

Decrease k by 1.
)

Another example drawn from RSAS work is:

While Point-in-plan of AFCENT is Defense

I

Perform AFCENT-determine-FLOT.

17The equal sign (=) may not be used in RAND-ABEL for assignments. Thus, "Let Y be
4.0." is valid; "Let Y = 4.0." is not. The equal sign is used in RAND-ABEL only for its basic
mathematical or logical meaning of equality, as in "If Y = 4.0 Then...".

-20-

Perform AFCENT-deterrence-deployment-move.

[Many omitted statements]

If [conditions testing whether Austria is under attack)

Then Perform AFCENT-support-Austria-move.

[Many omitted statements]

If... [details omitted]

Then Let point-in-plan of AFCENT be Move-to-termination.
)

For Loops

RAND-ABEL's For statement is unlike that of most other languages. An example

would be:

For alliance-members:

Perform Force-calc using alliance-members as country.

If alliance-members was of type Type-NATO, an enumeration with values equal to the

members of NATO, then this statement would have the effect of executing "Perform

Force-cac" once for each member of NATO.Is A useful variant of this syntax is

illustrated by:

For alliance-members (US or UK or France):

Perform Force-calc.

The parenthetical expression limits execution to the subset of alliance members indicated.

Continue and Break

The key words Continue and Break can be used in While or For loops and the

general Table statement mentioned below. Continue means to start the next repetition of

the loop. Break means to leave the loop altogether, picking up with the next statement.

These are both illustrated by the following example in which a test is being conducted on

each member of a group, only one part of which is relevant to the test being performed.

In this case, it is sufficient that the condition of the test be fulfilled by any one member of

the group.

lThe example given in the RM (page 41) incorrectly omits the colon.

-21-

For group:

{
If item-type of [given item of] group is type-A

Then Continue.

[Else if item-type is type-B]

If position of group > threshold

Then
(

Let trouble be Yes.

Break.

TABLE STATEMENTS

Tables are the most innovative single feature of the RAND-ABEL language. They

arrange the elements of statements in a familiar and cognitively efficient way-so much

so that RAND analysts routinely use precisely the same table structures in brainstorming,

model design, and coding. Further, nonprogrammer experts can review the tables

directly, with no programmer translations.

One can construct a wide variety of tables using the general concepts described in

the reference manual, but two are especially important and will be illustrated here.

Decision Tables

The first and arguably most important table statement is a decision-table version of

an If-Then-Else statement. It is illustrated by the decision table at the top of p. 22. 19

Note the periods at the end of the == line and at the end of the table. These are

required parts of syntax (the RM erroneously omits one of them). The slash (/) separates

the inputs from the outputs (i.e., the independent from dependent variables). The

operators >, <, and so on must, in decision tables, be butted up against the values that

follow them (i.e., no spaces). They greatly reduce the number of lines necessary to

complete the decision table and, in many cases, greatly improve the clarity of the logic.

Short decision tables can often represent what would be extremely bushy decision trees if

t9The phrase Decision Table acts like a key word even though it is not one, strictly
speaking. Decision is an identifier for a type of table, while Table is a key word. As a practical
matter, Decision Table can be regarded as a key word.

-22-

Decision Table

Status Risks I Guidance

goals-met ** termination

>=good <--medium no-change

>=good high offer-cease-fire

bad offer-cease-fire

very-bad low offer-cease-fire

very-bad >-medium terminate

[End Table].

presented graphically. As illustrated in the problem sets, table outputs can be algebraic

expressions or, in effect, pointers to functions. The last line of the table assures that the

dependent variable always has a value. This is good programming practice, because local

variables without assigned values may be given random values (called garbage) by the

computer.

The first line of the table is equivalent to the statement:

If Status is goals-met and

Risks are Unspecified 20

Then Let Guidance be termination.

The second line of the table is equivalent to:

Else

If Status is at least good and

Risks are no more than medium

Then Let Guidance be no-change.

201n some older RAND-ABEL code one may see ++ used to indicate "don't care" or "any
value"/or variables with numerical values; ** can now be used for either numerical or qualitative
values.

-23-

Our second example illustrates how equations can be outputs in decision tables.

This single table is specifying the equations to be used in 14 different cases.

[Note: The DLR and ER equations are simple approximations of Lanchester
equations as defined in CAMPAIGN for CEUR corps-sized LOC battles. Assault-
type battles are Hasty-def, Delib-def, Prep-def, and Fortified. The Exploit type
battle is currently the same as pursuit.]

Decision Table [LOC axis combat attrition rates; DLR and ER: defender loss rate and
exchange rate; FR: force ratio]

type-battle / DLR ER

/

Cutoff (.168 * FR / (FR + 2.8)) (6.7 / (FR + 1.8))
Surround (.168 * FR /(FR +2.8)) (6.7 /(FR + 1.8))

Delay (.098 * FR / (FR + 3.6)) (9.0 / (FR + 1.5))
Hasty-def (.168 * FR / (FR + 2.8)) (6.7 / (FR + 1.8))

Delib-def (.140 *FR/ (FR + 3.0)) (12 / (FR + 2.0))

Prep-def (.119 *FR/(FR + 3.2)) (16/(FR + 2.0))

Fortified (.09 * FR / (FR + 3.6)) (19 / (FR + 1.6))

Meeting (.21 * FR / (FR + 3.0)) (1.5 /(FR + 0.5))

Static (.06 * FR / (FR + 6.0)) (3.6 / (FR + 1.8))

Breakthru 0.15 0.33

Exploit 0.06 0.33

Pursuit 0.06 0.33

Pin 0.03 1.3

Advance 0.04 0.75

0.001 1.0
[End Table].

Decision tables are the natural format for presenting a large percentage of the rules

that constitute typical knowledge-based models such as those found in expert systems.

They are much more effective in terms of the reader being able to comprehend the whole.

They are also much more efficient, reducing by large multiples the number of lines of

code. Most importantly, perhaps, by putting so much of a program's substance in such

-24-

tables one maximizes the effectiveness with which analysts and modelers can both review

and modify that substance without being expert programmers.21

Function Tables

The second widely used type of table is called a function table because it executes

a function repetitively. The example shown below assumes a function exists to issue

mission orders to the forces on different axes of advance named CEUR-2, CEUR-3, and

so on. The table specifies what mission (e.g., "defend, but give ground in delay

operations if necessary," as distinct from the "defend" mission which means trying to

hold ground) and specifies further the range of area over which the mission applies (the

numbers are fictitious). In the example, the first line of the table statement is precisely

equivalent to "Perform Axis-mission-order using CEUR-2 as axis..."

Table Axis-mission-order

axis mission start-kms end-kms

CEUR-2 Defend-delay 0 109

CEUR-3 Defend-delay 0 100

CEUR-4 Defend-delay 0 134

CEUR-5 Defend-delay 0 126

CEUR-6 Defend 0 40

And.

Function tables can be highly compact and powerful. One example showing off

some of their flexibility is given in the RM (p. 48).

Building Other Table Statements

As described elsewhere (RM, p. 45), the decision table is only one of a great many

table statements that can be defined by using the more general Table statement built into

the RAND-ABEL language. In that statement one specifies as a preamble to the table

how each line is to be processed logically. Part of the preamble is called a macro and the

table is often called a macro table. For example, instead of an If-Then-Else logic as

included in the Decision Table statement, one could have a pure If table; in that case,

21RAND-ABEL decision tables are an excellent way to accomplish what in some other
languages would be done with "case statements."

-25-

more lines would be needed in some cases, but each line could be read and understood by

itself, without understanding what has already been covered by previous lines. Other

possibilities include tables involving If...and...or...Then... (instead of all columns being

combined by "and"). A rather clever example of a general Table statement is given at the

end of the problem sets in the Appendix.

FUNCTION STATEMENTS
A function is not itself a statement, but "Perform function-name." is a statement,

one that invokes the function. Also, there are two special types of statements built into

the language for use at the end of function definitions. These are Exit. and Exit

reporting As in other languages, Exit directs control out of a function during

execution; End indicates the end of a function's definition.

MACROS

As mentioned earlier, one can establish aliases or synonyms, which have the effect

of substituting one string of characters for another. The syntax for this is illustrated by:

#define esc [Global-escalation-guidancel.

This defines "esc" as the alias for Global-escalation-guidance. In the unique context of

the #define statement, items in brackets are not comments. In processing an expression

such as "If esc is None...", the actual processing would be of "If Global-escalation-

guidance is None...". Macros are commonly used by programmers, but they can cause

considerable trouble, since not everyone may remember or recognize them and because

they hide important information about what variables are being referenced or changed.

Macros can be employed locally or globally, depending on where they are introduced.

Finally, it should be noted that words can be declared noise words by a Declare Ignore

statement, described in the RM.

INPUT AND OUTPUT STATEMENTS
It is beyond the scope of this primer to discuss input/output statements in any

detail. Input, in particular, is handled differently in RAND-ABEL than in most

languages, at least currently.22 With respect to output, it is easy in practice to write such

22Currendy, input is specified by initializing the compiled World Situation Data Set
(WSDS) or by writing assignment statements in a file to be executed intepretively (see Section V,
which describes use of the interpreter).

-26 -

statements by copying examples to be found in existing code. Alternatively, one can

spend the time to become proficient, which requires some knowledge of UNIX

commands or toleration of magic incantations (RMK pp. 52-58). A typical statement

generating output in a log file might be:

Log "Since basic-status is good, Let escalation-guidance be" escalation-guidance.

The string in quotes will be printed precisely as written, followed by the current

value of the variable "escalation-guidance."

NULL STATEMENTS

Null statements are used occasionally for a variety of reasons, such as setting up

some logical distinctions that may be more fully exploited later when the program is

given more complex rules. Null statements are of two types: (a) a period or (b) a set of

empty curly braces. The syntaxes might be:

If Basic-status is good

Then.

Else If Basic-status Is marginal

Then{)
Else

Let Trouble-report be Yes.

- 27 -

IV. COPROCESSES

One highly unusual feature of RAND-ABEL is that it allows users to exploit

"coprocesses," which are separate computer programs that take turns operating under a

main program. In a war game such as the RSAS there can be separate coprocesses for

each important player (e.g., for both sides' various theater commanders, as well as for

third countries and the sides' political leaderships). Details are beyond the scope of this

primer-see, for example, Section 10 of the RM and Davis and Hall (1988)--but it is

important for analysts to understand that each of the coprocesses "awakes," executes a

portion of its program, "goes to sleep," and later reawakes to continue executing where it

left off. A coprocess asks to be put to sleep temporarily by calling an appropriate

function, which may also specify when it should be awakened, in terms of either time or

condition. An example is as follows:

If Today >= D-Day of AFCENT + 3 and

Move-done of AFCENT, Realign-FRG-II-Corps is No

t'hen Perform AFCENT-Realign-FRG-l-Corps.

[Sleep til tomorrow unless...]

Perform Sleep-to-next-move using the function

Test-nuclear-authorization as planned-wakeup, and

((Today [in days] + 1) * 24) as time-limit [in hours].

[Check for change of phase]

If Authorization of Release, AFCENT is Nuclear...

In this example, the program representing the military command AFCENT

performs a function AFCENT-Realign-FRG-II-Corps and then goes to sleep either until

24 hours has elapsed or until AFCENT is granted nuclear authorization by higher

authority. Upon awakening, the AFCENT program picks up where it left off, first

checking to see whether nuclear authorization has been granted. More generally, the

sleep statement might be something like: "Perform Sleep-to-next-move using the function

Test-wakeup-conditions as planned-wakeup and ((Today + 1) * 24) as time-limit." In this

case, the function Test-wakeup-conditions might include a whole series of conditions to

be tested regularly. For example, AFCENT might want to wake up if the opponent used

nuclear weapons, if there had been high attrition, etc. The typical problem for analysts is

to adjust the time of conditions for wakeups.

- 28 -

V. EXPRIMENTiONG ON-LINE

This section is for readers using a Sun work station with a working program

written in RAND-ABEL, either the RAND Strategy Assessment System (RSAS) or

programs developed in the generic RAND-ABEL Modeling Platform (RAMP). Such

readers can conveniently develop their skills by actually changing and running code.

Since this requires at least some understanding of UNIX commands and the RSAS or

RAMP environments that goes beyond the intent of this primer, what follows is brief and

will be meaningful only to some readers.

The procedure recommended for on-line experimentation is as follows:

I. Have your system administrator or an experienced system user help you to

log onto the system, start the RSAS, bring up a "shell window," and move

into the directory containing some existing RAND-ABEL code that you

would like to read and change as part of your learning experience. You will

probably have a prompt sign such as %.

2. Use the "copy" command to make your personal copy of an entire file by

typing:

cp filename testfile.A

Move the file, testfile.A, into the INT directory under the Run directory. You

may need help to do this the first time if you are inexperienced with UNIX.

3. Move to the INT directory and use the editor "e" to open the file you have

named testfile.A by typing

e testf'de.A

and then page through the file to a function that is interesting to you as

something to read, modify, and run. Use the Mark and Close commands to

delete everything else in the file except the "Owner." statement at the top of

the file.

4. Start by reading the function. Experiment using the Cross Referencing Tool

(CR-Tool) that can be activated in the control window. Use the tool to look

- 29 -

up the data type of several variables appearing in the function, the range of

values taken on by some enumerated variables if there are any, and their

data-dictionary declarations, including possible explanatory comments

describing the variables' real "meaning." Figure 5.1 illustrates this for the

variable Cohesion-of-NATO.

5. Next, experiment with changing the code. Just use the editor as you would if

you were editing a manuscript (except to write RAND-ABEL rather than

ordinary English). Remember that you can't just start using new variables

because you wish they existed. If you want information that would be input

SELECTION OF QUERY:

.: .sT e ..

Input: View Declaration)

Name: Cohesion-of-NATO Typed in:
Owner: Blue name of

variable

QUERIES
1. Type 4.
2. Where Declared 5. Enumeration names for this value
3. Where Referenced 6. Index information Infoumationsought

RESPONSE OF CR TOOL:
Range of

Possible enumeration value (s) for Cohesion-of-NATO enumeratedvalues

Low
Medium Declaration
High and

'definition" from
Declare Cohesion-of-NATO: the data dictionary

Let Cohesion-of-NATO be Type-cohesion.
Definition:
[A measure of how cooperative and involved the NATO
allies are in supporting the Blue alliance in a superpower conflict.].

Fig. 5.1-Illustrative use of the RSAS cross-referencing tool
(schematic of on-screen display)

-30-

for the function, then you must use pre-existing variables available to that

function. You may need help to identify your options here. However, so

long as you are merely changing logic rather than variables, or using

variables that are already being used within the function, you should be all

right.

6. When you believe you have a valid change ready to be tested, exit the file.

7. Select the "Interpret now" command from the background menu of the

Control Panel and watch the subwindow below the control window to see the

results. 23 If you are lucky, it will tell you that the function has now been

interpreted. If you are less lucky, there will be error statements. You may

have to scroll backward in the window to read them all, although all may be

due to a single bug. It is beyond the scope of this primer to teach debugging,

or even interpretation of the interpreter's arcane error messages, but from

experience we can observe that much can be accomplished by just plunging

on. Open the file testfile.A again and look for errors or possible errors. If the

error message says there is a bracket missing, that's easy-go look for it. In

other cases the message may at least say, in terms of line number, where the

computer first got confused. The error may be there or it may be earlier-

even much earlier. However, just start looking. Figure 5.2 shows the error

message one obtains by trying to declare a new variable called, rather

foolishly, "Let." This, of course, is invalid because "Let" is already a key

word of the language. Note that there are numerous error messages, even

though there is only one error.

8. In practice, working with an experienced user of RAND-ABEL at this stage

can be enjoyable and highly efficient. Another practical approach is to

browse through existing code, being aware of stylistic tricks as well as

23The RAND-ABEL interpreter feature works as follows. When the program is executed,
a function appearing in the TNT directory with a suffix .A will be compiled and executed in lieu of
the original compiled-in version of the function. Execution is perhaps 40 times slower for those
functions that are interpreted, but that is usually a very small part of the overall program even if
one is doing considerable interactive tinkering.

-31-

7Daata

(Ru ame)L~

interpreted
INTfloc-combat.A, linel\: Error - Statement skipped\:
syntax error near token Let
lNT/loc-combat.A line 34V: Error - Statement skipped\: "_Ero
syntax error near token IF messages
INT/loc-combat.A line 46V: Error -- Statement skipped: fo
syntax error near token IF interpreter

Defie Asessaxiscutofs:Erroneous
Declare f lot :Let flot of Type-level be 1.0. statement

Shell
window

modiiedWP A 41in /I f1/aw/Rsas/RunlNT/loc-comb

Line number in file

Fig. 5.2-Illustrative error messages while attempting to interpret code
(schematic of on-screen display)

-32-

syntax. Good examples of RAND-ABEL code can be found using the
background walking menus to source code. Or, it may be best to work

through some of the baseline-case documentation provided to RSAS users,

which walks new users through baseline simulations.

9. For instructions on building programs from the bottom up and, more

importantly, on compiling rather than interpreting changes, see Section XI of

the RM and ask for assistance as necessary.

- 33 -

VI. NEXT STEPS: BECOMING APPROPRIATELY PROFICIENT

Some readers will wish to become more proficient with RAND-ABEL, but doing

so is a matter of degree. One approach is to plunge on with an application, asking for

programmer assistance and instruction only when difficulties arise. The result will be,

over time, learning what needs to be done for the specific application. Some of what is

learned will be utterly mysterious-in the nature of issuing magical incantations.

However, that may be the most feasible way to proceed, especially given a minimal

background in programming and relatively uncomplex code.
A second approach is to graduate from this primer and some on-line experience to

a careful study of the RAND-ABEL reference manual. That is the approach that would

be taken by a professional programmer. Or, at least, such a programmer would skim

through the reference manual and study the parts he considered unusual and/or

nonintuitive. He would then use the reference manual from time to time when he ran into

problems.

Much of the complexity of working with RAND-ABEL programs has less to do
with RAND-ABEL than with the programs themselves. In particular, most current users

of RAND-ABEL are working with the RAND Strategy Assessment System (RSAS),

which is a highly sophisticated game-structured knowledge-based simulation of

worldwide crisis and conflict. Some of its programs exploit all the special features of

RAND-ABEL and contribute new ones specific to their needs. It will generally be

possible to read and make changes in individual functions (e.g., functions defining the

algorithms for calculating ground-combat attrition or the decision rules for escalation or

de-escalation) without requiring programming expertise beyond that covered by the

primer or learned quickly from experience. By contrast, much more skill is often needed

in changing the control structure of a program, introducing new variables or functions,

diagnosing bugs that cut across functions, and so on.

In practice, many RAND analysts who have used RAND-ABEL as part of the

RSAS have become fairly skilled programmers, at least in the context of the RSAS. If

necessary on a lonely weekend they can do their own debugging or find ways to work

around problems. However, it is often more efficient for them to work closely with a

professional programmer. The analyst, for example, may sketch out a new model by

listing the variables and functions, providing the necessary information for declarations,

and writing out the program in pseudo code. Because RAND-ABEL allows constructions

-34-

very close to what analysts want to use in any case, the pseudo code can be made almost

executable with only a bit of extra effort. The programmer may then take over, make the

declarations properly in the right files, change some of the originally proposed names

because of pre-existing variables with the same name, correct syntax errors (e.g., insert

braces and parentheses), etc. He may then note ways to collapse the logic to be both

clearer and more efficient (e.g., through use of While loops or by introducing some logic

early on to distinguish among cases that can be treated in separate functions). He then

implements this and shows the results to the analyst, who may correct some "corrections"

or suggest further improvements. The analyst is often able to run the programs and make

significant changes to them interactively with little or no programmer assistance-at least

after an iterative period during which the program's limitations are discovered and
corrected.

In our experience this approach has been highly successful. The analyst is close to

the real program and can determine definitively what it is doing and the degree to which
it corresponds to his original model. Further, he can design changes precisely, without

having to worry about mistranslations. He can also make some changes himself using the
interpreter features. However, efficiency is improved and software quality maintained

because of the collaboration with a programmer. In practice, of course, the programmers
often become modelers and some analyst/modelers do more programming than they

perhaps should.

- 35 -

PROBLEM SETS FOR SELF-LEARNING

CHARACTERS, NAMES, AND KEY WORDS

1. The following are examples of what (characters, names, identifiers, operators, or
functions)?

@5 * k

2. If your keyboard happened to have the symbol 0, could that be used as a character
in an executable RAND-ABEL statement?

3. Which of the following words are valid names (identifiers) for variables or functions
in RAND-ABEL? By and large, you should be able to create valid names using
your intuition to avoid what "might be dangerous" (e.g., you should suspect that
extremely long names requiring a carriage return to print would not work).
Occasionally, however, you will make a mistake and receive a bug message when
you try to execute the program.

Snodgrass lnit-altitude Macro VO Gen-con Init.alt V.0. 6 If

WEATHER-central Ans%$poo Author

4. Since the symbol 6 is recognized by RAND-ABEL as the number six, it cannot be
the name of a variable. However, A.6 is a valid name. How does the computer
understand that the 6 in A.6 is not a number but merely a character that is part of a
name?

5. Which of the following are invalid as a key word?

Report from report from REPORT FROM report From

S. Since both End and end mean the same in a RAND-ABEL program, do Edgar and
edgar?

NUMBERS, ALGEBRA, AND LOGIC

1. Which of the following are valid ways to express Avogadro's number in RAND-

ABEL code?

6.02 E 23 6.02 * 10**23 6.02 E23 6.02E23 6.02 * l023

2. Re-express each of the following using math notation valid in RAND-ABEL:

-36-

UfYis6and
X is (a divided by b)

lbe...

U Y is greater than 3
Then Let X be Yes.

IfYisnot 3
Then Let X be Yes.

3. Which of the following is intended to be equal to I in RAND-ABEL? Re-express
all of them using parentheses or spaces to assure that they are both readable and
unambiguous to the computer.

2A3/8 (2A3)18 (2)A3/8 ((2)A3)/8

4. Which of the following is an invalid RAND-ABEL expression, and why? There
may be more than one error per item.

(((2+3)/4 + 5)

(2**3)*((4+5)/4.5)**2)

If weather is good
Then{

Let situation be good and Let Call-for-Patty be Yes.]

5. Why is the following invalid in RAND-ABEL? Write a correct version with the
same intended meaning.

If Box-status is empty and
Supply-status is little or none

Then Let Situation be poor.

RECOGNIZING THE ELEMENTS OF A PROGRAM

1. Mark up Figs. A. I-A.2 in the same manner as Fig. 2.2 of the text. Remember that
every item must be one of the following:

* Key word (treat noise words and operator symbols as key words)
* Variable
* Variable value
* Fnctlion
* Argument of (or parameter of) a function
* Value of a function
* Comment

- 37 -

If the Temperament of the Actor is Moderately-reliable
and the Effectiveness of the Actor is Low
and the Conflict-location-status of the Actor is None

Then
(

Let the Side of the Actor be White.
Let the Cooperation of the Actor be Normal.
Let the Preparedness of the Actor be Normal.

I
Else If the Temperament of the Actor is Reliable...

Fig. A. l-Illustrative RAND-ABEL code (1)

If Current-situation is Eur-demo-tac-nuc
Then
Decision Table

Escalation-
Basic-status Risks / guidance

goals-met -- Eur-term
progress-good low Eur-demo-tac-nuc
progress-marginal low Eur-gen-tac-nuc
progress-good marginal Eur-demo-tac-nuc
progress-marginal marginal Eur-gen-tac-nuc
- -- Eur-demo-tac-nuc
[End Table].

Fig A.2-llustrative RAND-ABEL code (2)

2. Go back to Figs. A.1-A.2 and identify examples of statements, compound
statements, and expressions.

RECOGNIZING OR ESTABUSHING DATA TYPES

I Consider the segment of code below and circle each of the variables and indicate its
data type:

- 38 -

If weather is good and
temperature >= 68 and
humidity <= 50.0 [%] and
location-of-friends is local

Then(
Let trip-appropriate be Yes.
Print "Trip is possible.".I

Else
(

Let trip-appropriate be No.
Print "Trip is not possible. #$!!@'.

2. In the decision table below, what kind of variable is each-arena? What are its
values? What about referee-function? Explain what the decision table is doing.
(Hint: this code is being used like a "case statement.") Suppose you were on-line
with the RSAS and wanted to use the cross referencing tool to help. If you were
unable to find each-arena or referee-function using the tool, what would the likely
explanation be? Where would you then look?

Decision Table

each-arena / referee-function
/

NEUR (function Norway-referee)
TF-Baltic (function Zealand-referee)
AG-Balkan (function Greece-referee)
AG-Turkey (function Turkey-referee)

CEUR (function CEUR-referee)
(function Do-nothing)

[End Table].

3. For those who have the RSAS or RAMP and are able to experiment on line, find
convenient sections of code and use the Cross Referencing Tool to verify your
assessments of data type, as well as to fir their ranges of values.

-39-

DECLARATIONS

1. Suppose you have constructed a paper-and-pencil model for calculating the height of
a falling body. You have written it as:

H = Ho - 1/2 gt2

Upon trying to represent this in a program, however, you find that current time is
represented by the variable Time and that there is no concept of the gravitational
constant within the program. The body's initial height is represented by a pre-
existing variable Alt, which applied at a time Time-init, but Alt is measured in feet
from the surface of the earth and you want to have height be represented in nautical
miles. You only need to use the variable height "locally," i.e., in a single function
where it is needed as part of another calculation involving the expected drag force.
Write code that would appear entirely within this function to declare appropriate
local variables and implement the formulas listed above.

2. (A challenging problem that will require using the reference manual). Suppose you
must declare a long list of variables of various types. Sketch out a table statement
that would prove convenient to this purpose--i.e., design the table you would like to
fill in. Subsequently, see if you can define that table using the general Table
mechanism described in the reference manual.

STATEMENTS

I. Write a decision table equivalent to the following, which a modeler might have
scrawled out in longhand.

If air-control is attacker and
strategic-surprise-of-defender is High

Then Let local-surprise-of-defender be High.
Else If air-control is attacker and

strategic-surprise-of-defender is Medium
Then Let local-surprise-of-defender be High.
Else If air-control is attacker and

strategic-surprise-of-defender is Low
Then Let local-surprise-of-defender be Medium.

Use examples in the reference manual to help construct the column headings neatly,
since some of the variable names are quite long.

2. Consider the decision table below. Note that some of its output columns involve
formulas. What is the prose version of the second line of the table? Here FR stands
for force ratio, ER for exchange ratio (attacker losses divided by defender losses),
and DLR is the defender's daily loss rate, as a fraction of defender forces. What
could be used instead of ++ to mean "any v*lue"?

-40-

Decision Table [point loss rates]
target battle FR / DLR ER

Landchoke Breakthru ++ 1.0 0.50
Landchoke Hasty-def ++ (.25 * FR /(FR + 2.80)) (7 / (FR + 1.8))
Airfield Hasty-def ++ (.34 * FR / (R + 2.80)) (6 / (FR + 1.8))

[End Table].

3. Consider the decision table below, where x and y are variables with values Low,
Medium, and Large; and z is a variable with values Bad, Fair, and Good. Look at
the last line of the table. Does it imply that so long as y is Low, z is Bad? Why or
why not? Rewrite the table to have one line for each logical case (i.e., rewrite
without using the operators > and <).

Decision table
x y / z

>Low >Low Good
S* >Low Fair
•* LOw Bad
[End].

4. The following illustrates the use of the general Table statement, which allows the
user to define the way in which the various column variables are processed. It tests
to see whether named air force units have already been deployed to their desired
destination; if not, it directs that they be so deployed. Study this example and then
answer the following questions: (a) What is executed next if the condition leading to
the "Continue" is met?; (b) How could the table statement be modified so that the
deployment order is given only after a certain time in the simulation? [Hint: assume
Today-in-days is a global variable.]

Define AFCENT-move-planes:

Table
(

Declare index: Let index be 1.
Declare axis: Let axis be Type-axis-overlay.
Declare unit: Let unit be "string".
Declare owner Let owner be Type-country.
Declare to-region: Let to-region be Type-region.

If AFCENT-squadron-moved of index is Yes
Then Continue.

Perform Deploy-air-order using unit as unit-name,
owner as owner, and W-region as to-region.

Let AFCENT-squadron-moved of index be Yes.
Log-decision " Moving " unit "to" to-region.

...n mm.morn mms n ll • mm n l [[)

-41 -

index axis unit OwIcr to-region

1CEUR-10 "37th-PB W" FRG France
2 CEUR-6 "41st-LAW" FRG Denmark
[this could go on for dozens of lines]
[End Table].

-43 -

INDEX

aliases 6, 25 macro 6

arguments 3, 16, 17 Macros 25

array 4 matrix, 10

arrays 10 modularity 14

Assignment statements 18 names 3

Boolean 9 noise 6

Break 20 noise words 25

Characters 3 operator 3

comments 3 Operators 6

compound statements 18 parameters) 3

Continue 20 pointers 10

Cross Referencing Tool 15 Pointers 12

Data Dictionary 15 Process 9

decimal numbers 9 read 14

decision-table 21 Real numbers, 9

declarations 12 statements 3, 18

Declare Ignore 25 Stream 9

enumerated variable 10 Strings 9

enumerations 10 Strong Typing 11

expression 3 strongly typed 11

For 20 subroutines 15

function table 24 synonym 6

Functions 15 synonyms 25

garbage 11 Table 24

If-Then statements 19 value of. 12

input 3 variables 3

Integers 9 vector4, 10
key words 3,4

Local and Global Variables 13

